R-OSSE Acoustic Waveguide

Marcel Batík
December 2022, rev. 6

Introduction

In the previous work the OSSE ("OS-SE") waveguide formula was presented ${ }^{1}$, extending the well-known Oblate Spheroidal (OS) waveguide by incorporating a smooth termination into a flat panel. While it proved the importance of the added gradual termination, due to its inherent half-space nature the usefulness was still somewhat limited - for a real-life use it is necessary to place such device into a finite baffle with an additional edge treatment which is not any more a part of its analytical description.

The now presented R-OSSE set of parametric equations goes a step further and defines a complete waveguide terminated into a free space by means of a convenient, self-containing analytical description. Such approach can be readily used e.g. in further optimization algorithms, CAD routines, etc.

The R-OSSE parametric description

In the following text we describe a profile of an axisymmetric waveguide as a set of coordinates $[\mathrm{x}, \mathrm{y}$], where ' x ' is the axial distance from the throat and ' y ' is the distance of the profile point from the axis.

Because the OSSE has the form of a function $y(x)$, it can't describe shapes that fold back as the profile curve progresses (it can't have two different values for a single x). For this we need a parametric description in a form $[\mathrm{x}, \mathrm{y}]=[\mathrm{x}(\mathrm{t}), \mathrm{y}(\mathrm{t})]$, where $\mathrm{x}(\mathrm{t})$ and $\mathrm{y}(\mathrm{t})$ are some functions of a new parameter ' t '. Typically these functions are constructed so that the parameter 't' ranges from 0 to 1 .

The functions used in the R-OSSE description are plotted on the Fig 1.

Fig. 1: R-OSSE $x(t), y(t)$ components

[^0]The functions on Fig. 1 are constructed by means of two conic sections each. The function $x(t)$ is simply a difference of $\mathrm{x} 1(\mathrm{t})$ and $\mathrm{x} 2(\mathrm{t})$, a hyperbola and a parabola (Fig. 2). The function $\mathrm{y}(\mathrm{t})$ is a weighted average of $\mathrm{y} 1(\mathrm{t})$ and $\mathrm{y} 2(\mathrm{t})$, both being hyperbolas, starting as y 2 and ending as y 1 (Fig. 3).

Fig. 2: $x(t)$ components

Fig. 3: $y(t)$ components

R-OSSE design formulae

Design Parameter

R
a
r_{0}
a_{0}
k
r
m
b
q

Description

Waveguide outer radius
Nominal coverage angle
Throat radius
Throat opening angle
Throat expansion factor

Apex radius factor
Apex shift factor
Bending factor
Throat shape factor
unit/example
[mm]/190
[deg]/40
[mm]/18
[deg]/0
1
0.3
0.8
0.3

3

Auxiliary constants

$$
\begin{aligned}
& k_{1}=\left(k r_{0}\right)^{2} \\
& k_{2}=2 k r_{0} \tan \left(a_{0}\right) \\
& k_{3}=\tan ^{2}(a) \\
& L=\frac{\sqrt{k_{2}^{2}-4 k_{3}\left(k_{1}-\left(R+r_{0}(k-1)\right)^{2}\right)}-k_{2}}{2 k_{3}}
\end{aligned}
$$

Core functions

$$
\begin{aligned}
& x_{1}(t)=L\left(\sqrt{r^{2}+m^{2}}-\sqrt{r^{2}+(t-m)^{2}}\right) \\
& x_{2}(t)=b x_{1}(1) t^{2} \\
& y_{1}(t)=\sqrt{k_{1}+k_{2} L t+k_{3} L^{2} t^{2}}-r_{0}(k-1) \\
& y_{2}(t)=R+L\left(1-\sqrt{1+k_{3}(t-1)^{2}}\right)
\end{aligned}
$$

R-OSSE parametric equation

$$
\begin{aligned}
& x(t)=x_{1}(t)-x_{2}(t) \\
& y(t)=\left(1-t^{q}\right) y_{1}(t)+t^{q} y_{2}(t), t \in<0,1>
\end{aligned}
$$

The following charts give an overview of the effect of each individual design parameter on the resulting shape.

R-OSSE [x, y] [mm]

$\mathrm{y}(\mathrm{t})$ [mm]

$x(t)[m m]$

$y(t)[m m]$

$\mathrm{x}(\mathrm{t})$ [mm]

$y(t)[m m]$

R-OSSE $[x, y][m m]$

$x(\mathrm{t})$ [mm]

$y(t)[m m]$

R-OSSE $[x, y][m m]$

$x(\mathrm{t})$ [mm]

$y(t)[m m]$

Practical design example

R-OSSE parameters

A sample waveguide ${ }^{2}$ with $25.4 \mathrm{~mm}\left(1^{\prime \prime}\right)$ throat is presented, given by the parameters listed below. This set of values results in a device that is $260 \mathrm{~mm}(\sim 10 ")$ wide and slightly less than $80 \mathrm{~mm}(\sim 3 ")$ long - see Fig. 4.

$\mathrm{R}=130 \mathrm{~mm}$	$\mathrm{k}=1.8$
$\mathrm{r} 0=12.7 \mathrm{~mm}$	$\mathrm{r}=0.3$
$\mathrm{a} 0=7.5 \mathrm{deg}$	$\mathrm{b}=0.3$
$\mathrm{a}=39 \mathrm{deg}$	$\mathrm{m}=0.8$
	$\mathrm{q}=3.7$

Fig. 4: Sample waveguide profile

[^1]
BEM simulation

The above axisymmetric device was numerically simulated in free field - as free standing with 5 mm thick wall - via a boundary element metohd (BEM), using software ABEC by R\&D Team ${ }^{3}$ (Mr. Joerg Panzer). 100 frequency points between 200 Hz and 20 kHz were used for the calculation. The results are presented in the following graphs.

Fig. 5: BEM results - SPL polars, 0-90 deg / 5 deg step, 10 deg normalized

Fig. 6: BEM results - Polar map [dB SPL]
3 http://www.randteam.de

Fig. 7: BEM results - Directivity Index [dB]

Fig. 8: BEM results - Throat acoustic impedance

Ath script code

For a reference, this is the Ath ${ }^{4}$ script code that was used to create the above waveguide BEM mesh.

```
R-OSSE = {
    R = 130
    r0 = 12.7
    a0 = 7.5
    a = 39
    k = 1.8
    r = 0.3
    b = 0.3
    m = 0.8
    q}=3.
}
Mesh.LengthSegments = 60
Mesh.AngularSegments = 8
Mesh.SubdomainSlices =
Mesh.WallThickness = 5
Source.Shape = 1
ABEC.SimType = 2
ABEC.SimProfile = 0
ABEC.MeshFrequency = 43000
ABEC.NumFrequencies = 100
ABEC.Abscissa = 1
ABEC.f1 = 200
ABEC.f2 = 20000
ABEC.Polars:SPL = {
    MapAngleRange = 0,180,37
    NormAngle = 10
}
Output.ABECProject = 1
Output.STL = 0
Report = {
    Title = ST260-ROSSE
    Width = 1600
    Height = 1000
}
```

4 Ath design tool - https://at-horns.eu

[^0]: 1 http://www.at-horns.eu/release/OS-SE Waveguide.pdf

[^1]: 2 This is an approximation of a device that has been around for some time, known as "ST260", made freely available for audio hobbyists, at the time constructed using a different and more complicated approach.

